
TECHNICAL RESEARCH REPORT

Stochastic Language-based Motion Control

by Sean Andersson, Dimitrios Hristu-Varsakelis

CDCSS TR 2003-1
(ISR TR 2003-31)

CENTER FOR DYNAMICS
AND CONTROL OF

SMART STRUCTURES

C

S

D
+

-

The Center for Dynamics and Control of Smart Structures (CDCSS) is a joint Harvard University, Boston University, University of Maryland center,
supported by the Army Research Office under the ODDR&E MURI97 Program Grant No. DAAG55-97-1-0114 (through Harvard University). This

document is a technical report in the CDCSS series originating at the University of Maryland.

Web site http://www.isr.umd.edu/CDCSS/cdcss.html

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2003 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Stochastic Language-based Motion Control

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Army Research Office,PO Box 12211,Research Triangle Park,NC,27709

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

7

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Stochastic Language-based Motion Control

Sean Andersson
Electrical and Computer Engineering and

Institute for Systems Research
University of Maryland

College Park, MD 20742
sanderss@isr.umd.edu

Dimitrios Hristu-Varsakelis
Mechanical Engineering and

Institute for Systems Research
University of Maryland

College Park, MD 20742
hristu@isr.umd.edu

Abstract— In this work we present an efficient environment
representation based on the use of landmarks and language-
based motion programs. The approach is targeted towards
applications involving expansive, imprecisely known terrain
without a single global map. To handle the uncertainty inher-
ent in real-world applications a partially-observed controlled
Markov chain structure is used in which the state space is
the set of landmarks and the control space is a set of motion
programs. Using dynamic programming, we derive an optimal
controller to maximize the probability of arriving at a desired
landmark after a finite number of steps. A simple simulation
is presented to illustrate the approach.

I. INTRODUCTION

As systems theory reaches into the domain of multi-modal
systems, it reveals a complexity of behavior that is not usually
encountered in classical models. This complexity is part of
what motivates research in the subject but at the same time
it gives rise to new challenges when it comes to answering
basic system-theoretic questions in the new setting. This
point is perhaps most easily illustrated in the following
example: knowing that a mobile robot or other autonomous
system is controllable (by checking the properties of a
governing differential equation) does not tell us whether it is
possible (or how) to steer the robot between two locations
in a reasonably complex environment. The reasons for this
difficulty are twofold. First, the environment is at best only
locally state space-like, with regions that are uninteresting or
should be avoided. Second, a complex environment makes it
difficult to design control laws, especially if one insists on
doing so at the level of sensors and actuators.

Efforts to address the latter challenge have included re-
search on the “motion description languages” MDL and
MDLe [1], [2], [3] which provide a means for abstracting
from the low-level details (e.g. kinematics and dynamics) of a
control system. Control programs written in these languages
combine feedback control laws and logic into strings that
have meaning almost independently of the underlying sys-
tem, much like desktop software achieves a level of hardware
independence by relying on appropriate device drivers.

The design of a motion description language shapes the set
of control laws that can be formulated, as does the choice
of a representation for the environment. After all, feedback
control is a map between observations and inputs. Perhaps
then it should come as no surprise that language can be useful

not only for expressing control tasks but also for describing
the environment. In particular, [4] proposed representing
the environment of a language-driven dynamical system
by means of landmarks, linked together not by geometric
relations but by the feedback control laws required to move
from one location to another. This gives rise to a directed
graph, with nodes corresponding to landmarks and edges
being identified with control programs encoded in the motion
description language MDLe [2], [3]. This representation of
the world makes contact with studies on human and animal
navigation (see, e.g., [5]) that suggest the existence of two
navigation systems used by mammals: a local response sys-
tem and a global place-knowledge system. In simple terms,
when the goal location is visible local information is used to
navigate; when moving to locations which are not visible,
stored knowledge of the spatial structure of the world is
used. Although landmark-based navigation has been explored
extensively by other authors for localization [6], [7], naviga-
tion [8], [9] and descriptions of “large-scale” environments
[10], the novelty of the approach in [4] is that geometric
relationships and global coordinates are abandoned in favor
of language-based instructions that can be interpreted down
to control laws suitable for driving a differential equation-
based model. This results in a parsimonious description of
the world, without the need for global geometry and without
mapping areas that are easily navigable or uninteresting.

In this work we use [4] as a point of departure to study
language-driven control and navigation in a stochastic setting.
We exploit classical results on partially-observed controlled
Markov chains to obtain control programs (more precisely
strings in a formal language) that are optimal in the presence
of uncertainty associated with the environment, the sensors
and actuators of the system under consideration and with
the precision of the language itself. The next section gives a
brief description of MDLe. Section III presents the control
problem we are concerned with and describes its Markov
chain representation. In Section IV we derive control policies
that are optimal for moving to a desired landmark. Section V
contains simulation results that illustrate our approach.

II. MDLE

The starting point for MDLe is an underlying physical
system such as a mobile robot with a set of sensors and

actuators for which we wish to specify a motion control
program. The system is assumed to be governed by a
differential equation of the form

ẋ = f(x) +G(x)u; y = h(x) ∈ IRp (1)

where x(·) : IR+ → IRn is the state of the system, u(·) :
IRp× IR+ → IRm is a control law of the type u = u(t, h(x)),
and G is a matrix whose columns gi are vector fields in IRn.
The simplest element of MDLe is the atom, defined to be a
triple of the form σ = (u, ξ, T), where u is as defined earlier,
ξ : IRp → {0, 1} is a boolean interrupt function defined on
the space of outputs from p sensors, and T ∈ IR+ denotes the
value of time (measured from the time the atom is initiated) at
which the atom will expire. To evaluate the atom is to apply
the control law u until the interrupt ξ is low or until T units
of time have elapsed. Atoms can be composed into a string,
called a behavior, that carries its own interrupt function and
timer. Behaviors can in turn be composed to form higher-
level strings (called partial plans) and so on. We will use
the term plan to refer to a generic MDLe string independent
of the number of nested levels it contains. For more details
on the language, including example programs, see [3].

III. LANDMARK-BASED NAVIGATION AMID

UNCERTAINTY

We assume that there is a set, L = {L1, . . . , Ln}, of
“interesting” or useful geographical locations which we call
landmarks. These landmarks can take various forms, such as
GPS coordinates, visual cues, or evidence grid maps [11]. In
general, however, they are identified with local geographical
information only; that is they are not referenced to any global
coordinate system. We associate to each landmark a sensor
signature as follows. Let s(t) ∈ IRp be the sensor data
collected at time t and let L be the current landmark taking
values in {Li} ∪ ∅. Then

L = Li if s(t) = si(t) t ∈ [t0, t0 + T] (2)

where si(t), t ∈ [t0, t0 + T] is the sensor signature of
the ith landmark. We do not assume these signatures to be
unique since a robot equipped with noisy sensors may at
best be able to identify to within a subset of the collection of
landmarks. We thus restrict our observations to the collection
of equivalence classes where two landmarks are deemed
equivalent if their signatures are “close” based on some
metric. We refer to this set as Z = {L̃1, . . . , L̃p} where
p ≤ n and each L̃i is a representative of the equivalence
class.

We will classify navigation tasks into two categories. The
first involves motion on or near a landmark. In this setting the
robot knows what landmark it is on and possesses a map of
the nearby terrain. Assuming the robot can use its sensors to
localize itself on this map, navigation is in principle solved by
path planning. In this paper we are concerned with navigation
between landmarks where, because we have assumed that we

do not have global geographical information, we cannot rely
on any map. In the absence of sensing and actuator noise,
one can replace geometric relationships between landmarks
with instructions on how to get from one to the other [4]. The
environment is then represented by a directed graph in which
the nodes are the landmarks and edges are associated with
MDLe plans. In order to be practical, this approach must be
modified away from its deterministic setting, since we cannot
guarantee that a given plan will perform as expected every
time due to noisy sensing and control and environmental
uncertainty.

To handle this uncertainty, we generalize the directed
graph representation to a partially-observed controlled
Markov chain. Given a collection of m MDLe plans denoted
by G = {Γ1, . . . ,Γm}, we associate to each plan a Markov
matrix, A(k), specifying the transition probabilities between
landmarks; thus [A(k)]ij = pij(k) is the probability of
ending at landmark Lj given that we begin at landmark
Li and execute plan Γk. At the completion of each plan an
observation is made, giving us information about the current
landmark.

It is important to note that this choice of representation
places some restrictions on the set of landmarks and plans.
Since the system does not know with certainty which land-
mark it is on at the completion of a plan, the effect of
applying each plan from each landmark must be known;
this is precisely the meaning of the Markov matrix A(k).
Furthermore, each plan must guarantee that upon completion
the system is at some landmark. A simple way of accom-
plishing this is, of course, to completely tile the world with
landmarks. A more economical approach, however, is to
choose plans carefully. For example, in an office environment
it is possible to create plans which ensure the system will
always end up inside an office rather than in a hallway,
though due to changes in the environment such as people
opening or closing their doors the particular office cannot be
specified with certainty. Thus, the use of feedback control
laws encoded as MDLe plans enables a simplified description
of the environment in a manner akin to that by which
feedback can reduce the complexity of motor programs [12].

IV. OPTIMAL NAVIGATION BETWEEN LANDMARKS

In order to use local navigation techniques the robot must
know which landmark it is on. In this section, then, we
propose a method of finding the sequence of MDLe plans
that drives the robot to a desired landmark with maximal
probability, in a time-optimal manner, under the assumption
that such sequences exist. Recent work along these lines can
be found in [13].

The navigation problem described in Section III is nat-
urally discrete. To find the optimal sequence we turn to
dynamic programming (DP) [14]. The state space for the
robot is the collection of landmarks L, the control space
is the collection Γ of MDLe plans, and the observation

space is the collection of equivalence classes of landmarks,
Z . Let xk, zk, uk be the state (location), observation, and
control respectively at time k and let k ∈ {0, 1, . . . , N}.
We assume that we are given a sensor model for the robot;
that is we know the distribution Pr(zk = j|xk = i) giving
us the probability of making observation L̃j given that we
are currently on landmark Li. Define the usual information
vector

Ik
�
= (z0, z1, . . . , zk, u0, u1, · · · , uk−1) (3)

and the vector of conditional probabilities

Pk|k = (p1
k|k, p

2
k|k, . . . , p

n
k|k)′ (4)

where ′ indicates transpose and pj
k|k = Pr(xk = j|Ik) is

the probability of being in state Lj at time k given the
information up to the current time. Using Bayes rule and the
assumption that the observation depends only on the state
and not on the previous information or current control we
have

pj
k+1|k+1 = Pr(xk+1 = j|Ik+1)

=
Pr(zk+1|xk+1 = j) Pr(xk+1 = j|Ik, uk)∑n
i=1 Pr(zk+1|xk+1 = i) Pr(xk+1 = i|Ik, uk)

(5)

Now define
Pk+1|k = A(u)Pk|k (6)

so that Pr(xk+1 = j|Ik, uk) =
[
Pk+1|k

]
j
. For ease of

notation we also define the diagonal matrix

Pz = diag (Pr(z|xk = L1), . . . ,Pr(z|xk = Ln)) (7)

and the vector e = (1, 1, . . . , 1)′. Using this notation equation
(5) has the form

pj
k+1|k+1 =

Pr(zk+1|xk+1 = j)
[
Pk+1|k

]
j

e′Pzk+1Pk+1|k
(8)

We can then write the update equation for the conditional
probability as the two step iteration given by

Pk+1|k = A(uk)Pk|k (9)

Pk+1|k+1 =
Pzk+1Pk+1|k
e′Pzk+1Pk+1|k

(10)

where P0|0 is a known initial distribution. To proceed with
the DP algorithm we must choose the cost function we wish
to minimize. We first choose to maximize the probability of
arriving at a desired landmark, denoted d, at time N . To this
end define the function

gN(x) =
{ −1 if x = d

1 otherwise
(11)

We denote a policy as π = {µ0, µ1, . . . , µN} where µk is
the control function at time k. The cost function we wish to
minimize is

Jπ(P0|0) = Ezk,k=1,2,...,N {Ex {gN (xN)|IN}} (12)

subject to the dynamics of (9,10). The final cost is

JN (PN |N) = Ex {gN (x)|IN}

=
n∑

i=1

gN(i)
[
PN |N

]
i
= G′

nPN |N (13)

where we have made the obvious definition for the vector
GN . Applying one step of the DP algorithm yields

JN−1(PN−1|N−1) = min
u
EzN

{
JN (PN |N)

}
= min

u

p∑
i=1

G′
NPzN=iA(u)PN−1|N−1 (14)

Thus the optimal control at the (N − 1)th step is

µN−1 = argmin
u

n∑
i=1

G′
NPzN =iA(u)PN−1|N−1 (15)

which simply minimizes the expected value of the cost over
the final observation. Carrying the DP algorithm one more
step we find the N − 2 stage cost to be

JN−2

(
PN−2|N−2

)
= min

u
EzN−1

{
JN−1

(
PN−1|N−1

)}
= min

u

p∑
i1=1

p∑
i2=1

G′
NPzN =i1A(µN−1)

·PzN−1=i2A(u)PN−2|N−2 (16)

The optimal control at time N − 2 is thus

µN−2 = argmin
u

p∑
i1=1

p∑
i2=1

G′
NPzN=i1A(µN−1)

·PzN−1=i2A(u)PN−2|N−2 (17)

which is the control which minimizes the expected value of
the final cost over the last two observations. The general case
is given by the following theorem.

Theorem 4.1: For k = N − 1, · · · , 0 the optimal cost to
go is given by

Jk

(
Pk|k

)
= min

u

p∑
i1=1

p∑
i2=1

· · ·
p∑

iN−k=1

G′
NPzn=i1

·A(µN−1)PzN−1=i2A(µN−2) · · ·Pzk+1=iN−k
A(u)Pk|k

The usual corollary yields the optimal control policy.
Corollary 4.2: The optimal control at time k is

µk = arg min
u

p∑
i1=1

p∑
i2=1

· · ·
p∑

iN−k=1

G′
NPzn=i1A(µN−1)

·PzN−1=i2A(µN−2) · · ·Pzk+1=iN−k
A(u)Pk|k

A simple extension allows us to maximize this probability
of arriving at the desired landmark in the minimum amount
of time. To this end we define the functions

gk(x) =
{ −bk xk = d

bk otherwise
(18)

and seek to minimize the cost function given by

Jπ(P0|0)= Ezk,k=1,...,N

{
G′

NPN |N +
N−1∑
k=0

G′
kPk|k

}
(19)

The DP solution is given by the following theorem.
Theorem 4.3: For k = N − 1, · · · , 0 the optimal cost to

go is given by

Jk

(
Pk|k

)
= min

u

[
G′

kPk|k

+
p∑

i1=1

(
G′

k+1Pzk+1=i1A(u)Pk|k
)

+
p∑

i1=1

p∑
i2=1

(
G′

k+2Pzk+2=i1A(µk+1)Pzk+1=i2A(u)Pk|k
)

+ · · · +
p∑

i1=1

· · ·
p∑

iN−k

(G′
NPzN=i1

·A(µN−1) · · ·Pzk+1=iN−k
A(u)Pk|k

)]
The optimal control follows immediately from this theo-

rem. We note that while the complexity of finding the optimal
control increases exponentially with the number of stages, it
grows only linearly in the number of landmarks.

V. SIMULATION RESULTS

To illustrate the proposed representation and the derived
optimal control laws, a simple simulator was developed.
The robot is modeled as a direct drive system obeying the
following nonholonomic kinematics

ẋ = uf cos(θ), (20)

ẏ = uf sin(θ), (21)

θ̇ = uθ, (22)

where
uf =

uL + uR

2
, uθ =

uL − uR

w
. (23)

Here uf and uθ are the forward and heading velocities,
uL and uR are the left and right wheel velocities, and w is
the distance between the wheels. It is equipped with a set
of range sensors. The environment is modeled by a set of
polygons. The simulator accepts an MDLe plan specified as
a list of atoms and at each time step the current interrupt
function is evaluated. If it has fired the next atom is loaded
and if not the control function is evaluated to determine uL

and uR. To model actuator noise, independent samples from
a normal distribution are added to uL and to uR. The system

equations are then integrated forward by one time step and
the sensors evaluated by intersecting each ray with the set
of polygons modeling the environment. The process then
repeats until the list of atoms is exhausted.

The office-like environment used for these simulations
is shown in Figure 1 together with a virtual robot. Three

0 2 4 6 8 10 12 14

−2

0

2

4

6

8

10

L
1
 L

2
 L

3

Fig. 1. Environment and robot

landmarks, denoted L1, L2, and L3, were defined. Their
(x, y) regions are shown in Figure 1. Each covered headings
of (−80,−100) degrees. The following control functions
were created.

• go [uf uθ]: Applies controls uf and uθ.
• goAvoid [ufN d kθ]: In the absence of obstacles within
d of the front, sets uf = ufN . If an object is detected
within d, sets uf = ufN (d− rmin) and uθ = ±kθ with
the sign chosen to steer away from the obstacle. (rmin =
distance to obstacle.)

• followWall [ufN kf kθ d]: Maintains distance and head-
ing to wall by setting uf = −kf (2(d−rmin)+ θ̂) sin(θ̂)
and uθ = −kθ((d − rmin) + 2θ̂) where rmin is the
measured distance to the closest side wall and θ̂ is
the estimate of the heading with respect to the wall.
If both distance and heading errors are small then sets
uf = ufN and uθ = 0.

• alignWall [kθ]: Sets uf = 0 and uθ = −kθ θ̂ where θ̂ is
the estimate of the heading with respect to the closest
side wall.

• rotateAway [kθ]: Sets uf = 0 and uθ = −kθθ̂ where θ̂
is the estimate of the heading with respect to the rear
wall.

The following interrupt functions were also defined.

• wait [τ]: Fires after τ seconds.
• sideOpen [side d τ]: Fires if sensor on side indicated

by side (with 1 indicating left, 2 indicating right, and 3
indicating either) reads less than d or if τ seconds have
passed.

• alignedWall [ψ τ]: Fires if the estimated heading with

the nearest side wall is less than |ψ| or if τ seconds
have passed.

• rotatedAway [ψ τ]: Fires if the estimated heading with
the rear wall is less than |ψ| or if τ seconds have passed.

• atWall [d τ]: Fires if the front sensor reads less than d
or if τ seconds have passed.

From these functions various atoms were constructed and
from the atoms five plans were defined including the
identity plan (denoted 1I) which applies a zero control. The
remaining four (L2

1, L3
1, L3

2, and L1
3) were designed to steer

the robot in the absence of noise from landmark i to j . As
an example, plan L3

2 is

{ (sideOpen [3 6 5]) (followWall [1 20 2 0.4])
(atWall [0.3 30]) (goAvoid [1 0.05 1 0.025])
(wait [0.75]) (go [0 1.57])
(alignedWall [5 10]) (alignWall [2])
(wait [0.5]) (followWall [1.25 20 2 0.4])
(sideOpen [1 6 5]) (followWall [1 20 2 0.4])
(wait [0.5]) (go [0 1.57])
(rotatedAway [3 0.1 5]) (rotateAway [3])
(wait [3.5]) (goAvoid [1 0.4 1 0.025])
(wait [2]) (go [0 1.57])
(alignedWall [1 10]) (alignWall [2])}

where the notation is (interrupt) (control). This plan reads as
follows. Follow the nearest wall until either side reads greater
than six meters, then go straight until a wall is reached. Turn
counter-clockwise, align along that wall, and follow it for
half a second. Continue following the wall until the left side
sensor reads greater than six meters. Rotate and align to the
wall behind, move forward for three and a half seconds (but
do not run into any intervening obstacles), and then rotate
counter-clockwise 90o. Finally align to the wall.

It should be noted that the plans were chosen to be
somewhat brittle with respect to the simulated noise. In L3

2,
for example, the robot attempts to detect the opening to the
next room quickly. Due to noise the robot may not have
moved far enough and the interrupt will fire too soon, causing
the robot to end back on landmark two. While more robust
plans could certainly be designed, some level of uncertainty
was desired to show the use of the optimal controller.

The a priori observation probabilities were chosen to be
(with the notation Pr(i|j) = Pr(z = i|x = Lj))

Pr(1|1) = 0.5 Pr(1|2) = 0.3 Pr(1|3) = 0.2
Pr(2|1) = 0.2 Pr(2|2) = 0.6 Pr(2|3) = 0.1
Pr(3|1) = 0.3 Pr(3|2) = 0.1 Pr(3|3) = 0.7

The Markov matrices were determined by running each
plan 100 times from each landmark. Actuator noise was sam-
pled from a N (0, 0.01) distribution. The resulting Markov

matrices were

AL2
1

=

 0 0 0
0.43 0 0
0.57 1 1

 AL3
1

=

 0 0 0
0.12 0 0
0.88 1 1

AL3

2
=

 1 0 0
0 0 0
0 1 1

 AL1
3

=

 1 1 1
0 0 0
0 0 0

The optimal controller of Corollary 4.2 was used as

follows. The state was initialized and a three-stage controller
run to steer the robot to the desired landmark. At the end
of three stages the probability vector was tested and if the
probability of being at the desired landmark was less than
0.95 the process was repeated.

In Figures 2,3, and 4 we show the evolution of the state,
the true and observed landmarks, and the selected plan at
each time step for a sample run with a true initial position
on L1, an initial state of a uniform distribution across the
states, and a desired final position on L2. This run shows the
robustness of the approach to both the actuator and sensing
noise; despite driving to an unintended location twice and
getting several incorrect readings (including the final one)
the controller was successful in achieving the objective.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

time

S
ta

te
 p

ro
ba

bi
lit

y

Fig. 2. L1 to L2: State evolution

VI. CONCLUSIONS

In this paper we presented an approach to landmark-based
navigation for mobile robots intended for applications in
expansive or sparse environments and designed to handle the
noisy sensors and actuators one finds in real-world robotics.
Under this approach the set of landmarks is viewed as a
controlled Markov chain where the controls are feedback
control laws encoded in a motion description language.
Global information is thus replaced by local information
around each landmark and the connections between those
landmarks.

An optimal controller was developed using dynamic pro-
gramming that maximizes the probability of steering the
robot to a desired landmark in N steps. This controller was

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

time

La
nd

m
ar

k
nu

m
be

r
Actual
Observed

Fig. 3. L1 to L2: True and observed landmarks

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time

P
la

n

L
3
1

L
2
3

L
1
3

L
1
2

1

Fig. 4. L1 to L2: Executed plans

applied to a simulated robot and a typical run presented. The
simulation shows the robustness to actuator and sensor noise
afforded to the controller by the design of the underlying
framework. We note that the controller presented here is quite
simple one; more effective ones can certainly be designed.

There are several areas of ongoing work. We are currently
implementing the approach on a physical system in a large
environment. Since it is not practical to run a plan thou-
sands of times in the physical world, we are developing a
simulator which interfaces to our implementation of MDLe
[3] to determine the Markov matrices. We are also exploring
techniques to identify which landmark the robot is currently
on, questions about when we can uniquely localize ourselves
on a given set of landmarks (an observability question related
to work in [13]), and how to autonomously explore an
unknown environment and develop the Markov-chain based
representation proposed here.

VII. ACKNOWLEDGEMENTS

The authors gratefully acknowledge the help of Aaron
Greene in developing the code for the simulation.

This research was supported by NSF Grant EIA 0088081
and by AFOSR Grant No. F496200110415. The first author
was also supported by a grant from the ARCS foundation.

VIII. REFERENCES

[1] R. W. Brockett. Hybrid models for motion control
systems. In H. Trentelman and J. Willems, editors, Per-
spectives in Control, pages 29–54. Birkhäuser, Boston,
1993.

[2] V. Manikonda, P. S. Krishnaprasad, and J. Hendler.
Languages, behaviors, hybrid architectures and motion
control. In J. Baillieul and J.C. Willems, editors, Mathe-
matical Control Theory, pages 199–226. Springer, 1998.

[3] D. Hristu, S. Andersson, F. Zhang, P. Sodre, and P.S. Kr-
ishnaprasad. A motion description language for hybrid
systems programming. submitted to IEEE Transactions
on Robotics and Automation, 2003.

[4] D. Hristu-Varsakelis and S. Andersson. Directed graphs
and motion description languages for robot navigation
and control. In Proc. of the IEEE Conf. on Robotics
and Automation, pages 2689–2694, 2002.

[5] T. J. Prescott. Spatial representation for navigation in
animats. Adaptive Behavior, 4(2):85–123, 1996.

[6] A. Bandera, C. Urdiales, and F. Sandoval. Autonomous
global localisation using Markov chains and optimised
sonar landmarks. In Proc. of the IEEE/RSJ Int. Confer-
ence on Intelligent Robots and Systems, pages 288–293,
2000.

[7] B. Yamauchi. Mobile robot localization in dynamic
environments using dead reckoning and evidence grids.
In Proc. of the IEEE Int. Conference on Robotics and
Automation, pages 1401–1406, 1996.

[8] A. Schultz, W. Adams, and B. Yamauchi. Integrating
exploration, localization, navigation and planning with a
common representation. Autonomous Robots, 6(3):293–
308, June 1999.

[9] A. Lambert and Th. Fraichard. Landmark-based safe
path planning for car-like robots. In Proc of the IEEE
Int. Conference on Robotics and Automation, pages
2046–2051, 2000.

[10] B. Kuipers. The spatial semantic hierarchy. Artificial
Intelligence, 119:191–233, 2000.

[11] M. Martin and H. Moravec. Robot evidence grids.
Technical Report CMU-RI-TR-96-06, The Robotics In-
stitute, Carnegie Mellon University, 1996.

[12] M. Egerstedt and R. Brockett. Feedback can reduce the
specification complexity of motor programs. submitted
to IEEE Trans. Robotics and Automation, 2002.

[13] M. Egerstedt and D. Hristu-Varsakelis. Observability
and policy optimization for mobile robots. In Proc. of
the 2002 IEEE Conference on Decision and Control,
pages 3596–3601, 2002.

[14] D.P. Bertsekas. Dynamic Programming and Optimal
Control, volume 1. Athena Scientific, 1995.

